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We examine the shapes and energies of five- and sevenfold disclinations in low-temperature hex-
atic membranes. These defects buckle at different values of the ratio of the bending rigidity « to
the hexatic stiffness constant K4 suggesting two distinct Kosterlitz-Thouless defect proliferation
temperatures. Sevenfold disclinations are studied in detail numerically for arbitrary «/Ka. We
argue that thermal fluctuations always drive K/K 4 into an unbuckled regime at long wavelengths,
so that disclinations should, in fact, proliferate at the same critical temperature. We show analyti-
cally that both types of defects have power law shapes with continuously variable exponents in the
unbuckled regime. Thermal fluctuations then lock in specific power laws at long wavelengths, which
we calculate for five- and sevenfold defects at low temperatures.

PACS number(s): 05.70.Jk, 68.10.—m, 87.22.Bt

I. INTRODUCTION

Topological defects, such as dislocations and disclina-
tions, behave differently in membranes and monolayers.
Monolayers are films, typically with a triangular lattice
in their low-temperature crystalline phase, strongly con-
fined to a plane by, for example, surface tension. In
monolayers, pointlike topological imperfections are the
ingredients of a detailed two-stage melting theory [1,2],
which predicts that the usual latent heat associated with
a first-order melting transition can be spread out over an
intermediate hexatic phase characterized by long-range
bond orientational order and short-range positional order
[2,3]. In contrast to monolayers, membranes can easily
buckle out of the two-dimensional plane. This buckling
lowers defect energies. The standard example of a mem-
brane is an extended lipid bilayer surface in water solu-
tion [4]. Dislocation energies in membranes are finite, in
contrast to a logarithmic divergence with system size for
monolayers, which leads to melting of crystalline mem-
branes at any nonzero temperature for entropic reasons
[5,6]. The generic low-temperature phase for membranes
at large enough length scales is inevitably a hexatic liquid
with long-range bond orientational order and a vanishing
shear modulus.

Disclinations can also lower their energy by buckling.
The energy of a single disclination in an otherwise crys-
talline monolayer diverges with the square of the sys-
tem size. Buckling in a membrane leads to energies of
plus and minus disclinations that diverge only logarith-
mically with size [5]. Interestingly, the coefficients of
these logarithmic divergences are different: the energy
of fivefold (plus) disclinations is about a factor of 2 lower
than that of sevenfold (minus) ones [6]. This asymme-
try differs from the behavior of defects in most mono-
layer materials that exhibit the Kosterlitz-Thouless de-
fect unbinding transition [2]. Plus and minus vortices
in superfluid helium films, for example, must have ex-
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actly the same core energies and logarithmic divergences
with system size by time reversal invariance. Equality
of energies also holds for dislocations with equal and op-
posite Burgers vectors in crystalline monolayers. Plus
and minus disclinations in hexatic monolayers have dif-
ferent core energies, due to the different local environ-
ments of the five- and sevenfold defects, but the co-
efficients of their logarithmically diverging energies are
identical [1]. Identical coefficients for the logarithmi-
cally diverging + defect pairs ensure that the elemen-
tary Kosterlitz-Thouless energy-entropy balance leads to
the same proliferation temperature for each type of de-
fect. This famous argument [7] predicts that five- or
sevenfold defects proliferate whenever the free energy to
create a disclination, F5(R) = E5(R) — 2kgT In(R/ao)
or F7(R) = E7(R) — 2kpT In(R/ao), becomes negative.
Here E5(R) and E7(R) are disclination energies as a func-
tion of the system size R, and ag is a microscopic cutoff.

The disparate disclination energies in buckled crys-
talline membranes suggest that these energies may also
differ in hexatic membranes, as recently emphasized
by one of us [8]. The energy of fivefold disclinations
in hexatic membranes has been studied by Seung [9],
Guitter [10], and Guitter and Kardar [11]. The results
depend on two dimensionless parameters, x/kpT and
K a/kgT, where x and K4 are the membrane bend-
ing rigidity and hexatic stiffness constant, respectively.
When £/K 4 > 1, the membrane remains asymptotically
flat in the presence of both five- and sevenfold defects,
and the energies diverge logarithmically with equal co-
efficients. When k/K4 < 11/72, however, the fivefold
disclination buckles and reduces its in-plane bond angle
energy at the expense of bending energy. The resulting
energy still diverges logarithmically, but the coefficient
is reduced by buckling. The locus of Kosterlitz-Thouless
transition temperatures for fivefold defects in membranes
when buckling is included is shown by the solid curve in
Fig. 1. These disclinations assume a conical shape when
k/K4 < 11/72 and, as shown in Sec. III, exhibit a weaker
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FIG. 1. Phase diagram for proliferation
of isolated fivefold (solid curve) and sev-
. enfold (dashed curve) disclinations. Five-
and sevenfold disclinations buckle above lines
(not shown) extending from the origin to.the
tops of the vertical portions of the solid and
dashed curves, respectively. For small « or
K 4 (outside the curves), disclinations prolif-
erate. Lines of renormalized effective rigidi-
ties are also indicated (bold). Renormaliza-
tion group flows obtained by David et al.
in a low-temperature perturbation expansion
away from the unstable fixed line at K = oo
to the stable line describing the crinked phase
are indicated by the arrows.
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power law deviation from flatness when k/K4 > 11/72,
with continuously variable exponents.

In this paper, we study sevenfold defects and determine
the curve for their proliferation, shown as the dashed
curve in Fig. 1. Because buckled sevenfold defects do not
have the azimuthal symmetry of fivefold defects, some
numerical work is necessary. As anticipated in (8], the
sevenfold hexatic disclination energy exceeds its fivefold
counterpart for k/K 4 < 1, leading to a larger Kosterlitz-
Thouless critical temperature. We find that sevenfold
disclinations buckle to reduce the coefficient of their log-
arithmically diverging energy whenever /K4 < 13/216,
while they remain asymptotically flat when /K4 ex-
ceeds this value. There is again a power law deviation
from flatness for k/K4 > 13/216. As is evident from
Fig. 1, a naive application of the Kosterlitz-Thouless
criterion to hexatic membranes leads to two distinct de-
fect proliferation temperatures over a significant range of
parameters.

Our results provide useful information about deforma-
tions of hexatic membranes near defects at relatively low
temperatures. However, understanding the behavior at
very large distances from the defect cores requires that
we take into account the nonlinear renormalization of k
and K4 by thermal fluctuations. These effects were first
studied in a perturbative, low-temperature expansion by
David et al. [12], who found that the hexatic phase of
membranes is controlled by a line of fixed points in the
(kgT/K a,kpT/k) plane with slope x*/K% = 1/4. The
parameters < and K4 are driven toward the fixed line
by thermal fluctuations even if they initially lie in one of
the buckled regimes. This line and the associated nearby
renormalization group flows are indicated by the heavy
curve in Fig. 1. The unstable Kosterlitz-Thouless fixed
line for hexatic monolayers (k — o0) is also shown. Be-
cause the stable fixed line has a slope far below the crit-
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ical slopes for buckling of five- or sevenfold disclinations,
we conclude that these defects probably have symmet-
rically diverging energies when thermal fluctuations are
taken into account. Provided that the line of stable fixed
points, which is only known perturbatively at low tem-
peratures [12], does not bend significantly before pierc-
ing the vertical part of the Kosterlitz-Thouless instability
curve, both defects will remain unbuckled and prolifer-
ate at the same point. Although the coefficients of the
logarithmic divergences in five- and sevenfold disclina-
tion energies are the same, these defects have interesting
power law shapes in the “unbuckled” regime.

Park and Lubensky have recently incorporated fluctu-
ations in the internal metric of the membrane into the
work of David et al. [13]. Inclusion of these fluctua-
tions appears to be necessary to account for local in-plane
shear and compression modes, whose primary effect is to
dilate and reshuffle the nearest-neighbor bond connec-
tivity of the atomic or molecular constituents. Averag-
ing over these modes leads to an effective coupling K<f,
which should replace the hexatic stiffness in the model
used here. The bending rigidity is unchanged. The re-
maining renormalization of k and K fff by thermal undu-
lations, however, is identical to that found by David et
al. [12]. Thus our overall conclusions are unchanged, pro-
vided that we use x and the renormalized coupling KS¥
in our results and in Fig. 1. In agreement with the re-
sults of the study of disclination statistical mechanics by
Park and Lubensky [13], we still expect a symmetrical
+ disclination unbinding transition with unbuckled de-
fects in hexatic membranes. Disclinations cannot unbind
separately, in contrast to the predictions of the “naive”
Kosterlitz-Thouless argument, provided that the thermal
renormalization of the ratio x/KSf to 1/4 at long wave-

lengths remains intact out to the transition temperature
[15].
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In independent work, Park and Lubensky have also
studied the buckling of sevenfold disclinations [14]. Their
result for the critical ratio /K 4 and the behavior near
the buckling transition are in agreement with the results
presented here. Our results are more reliable in the limit
k/K 4 > 1, however.

It is worth noting that similar issues involving discli-
nation asymmetry arise even for monolayers, when two-
dimensional nematic order is present. The topologically
stable defects are now +1/2 disclinations and the ordered
state is described by both bend and splay elastic con-
stants K; and K3 [16]. When K; # K3, the energies
of + disclinations again diverge logarithmically with dif-
ferent coefficients. Here a renormalization group analy-
sis of nonlinear effects due to thermal fluctuations shows
that K; and K3 are driven to equality at long wave-
lengths, so that the “one-Frank-constant approximation”
becomes asymptotically correct at long wavelengths [17].
The disclinations energies are equal in this limit and one
again expects a symmetrical defect unbinding transition
[18].

We should stress that even though disclination energies
are asymptotically symmetrical in hexatic membranes,
buckling will still occur locally for appropriate parame-
ter values. Buckling will persist out to length scales such
that the renormalized value of the ratio x/KS is in the
unbuckled regime. An intrinsic microscopic asymmetry,
moreover, can still arise in the liquid, after the disclina-
tions unbind. As emphasized in Ref. [9], a net excess of
disclinations should have important consequences in lig-
uid membranes with free boundary conditions or a topol-
ogy that can change on experimental time scales. Exactly
how the + disclination populations become identical as
one approaches the liquid-to-hexatic transition from the
liquid phase is an interesting topic for future research.

In Sec. II we discuss how membrane buckling can
screen disclinations. In Sec. III we review analytical cal-
culations of the energy of a fivefold disclination. We use
approximate theory and exact numerical calculations to
calculate the energy and shape of a sevenfold disclina-
tion in Sec. IV. We review the important effects of ther-
mal fluctuations, including how these fix the asymptotic
defect shapes in the unbuckled regime, in Sec. V.

II. CURVED HEXATIC MEMBRANES WITH
DEFECTS

The Hamiltonian for a flexible, hexatic membrane is
given in the limit of vanishing surface tension by [5,19]

H=Hy+ H, + Hx,
Hy = ﬂ/dzs(a,-a — 2:)g" (8;6 — Q;),

2
H, = g/dzsﬁz,
H: = R/dst . (1)

All these integrals are over the surface of the membrane.
For the case of a membrane with free boundary condi-
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tions there should also be line tension and geodesic cur-
vature terms. We neglect these terms. Here g% is the
inverse metric tensor, H is the mean curvature, K is
the Gaussian curvature, and the gauge field is defined
by K = v*D;§;. Upon defining g = det(g;;), we have
Y9 = eijgm /2
The surface area element is given by d?S = d%og

We are interested in very flexible membranes, as op-
posed to monolayers, and so we will neglect the possible
surface tension term of the form H, = r [d%?S. We will
also ignore the Gaussian curvature term Hj, which is a
perfect derivative by the Gauss-Bonnet theorem. H, is
the standard bending energy term and Hy is the contri-
bution to the energy from fluctuations in the local bond
order parameter. The bond order parameter is frustrated
by the rotation of tangent vectors that occurs under par-
allel transport on a curved surface. The amount of frus-
tration is given by the gauge field €2;.

To gain some physical understanding of a flexible hex-
atic membrane, we examine the ground states. In par-
ticular, we search for the low-temperature geometries of
five- and sevenfold disclinations. After performing the
minimization over 8, we find

with €11 = €22 = 0 and €12 = —€21 = 1.
1/2

o0H

60(0) 6=06¢

where 6y is the bond angle field that minimizes the en-
ergy. Upon defining

=g /%8; [g7(8:60 — Q)] =0, (2)

800 — Qi = 7" 9;x (3)

we find that the derivative (2) is zero except when deriva-
tives of x do not commute. We can show that disclina-
tions cause the derivatives to fail to commute by applying
the operator v*8;, to Eq. (3) [8]:
D;Dix = K — ~*8,,0;6,
~ K(o) - s(0)
= ¢(o) . (4)

The disclination density is given by

s(o) = Zsi5(0 —ai)g(os) 2. (5)

K2

Here the disclination strength is given by s; = w/3 for a
fivefold disclination and s; = —m /3 for a sevenfold discli-
nation. Given the form of Eq. (4), we can express x in
terms of a Green’s function as

x(o) = ]dZS'G(U|U')c(U') , (6)

where
D;D'G(o|o") = V2G(o|o") = 6(c — o')g(a’) "2 . (7)

The Hamiltonian when the bond angle field is minimized
is given by

o= 52 [ 2585857 e(oe(0") (0.6 (010" 4
x [6;G(alo")] . (8)
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We see from Eq. (8) that the relevant quantity is not
the disclination density or the Gaussian curvature sepa-
rately, but rather the difference ¢(o) between them. Con-
sequently, the hexatic energy arising from a disclination
can be reduced by a nonzero Gaussian curvature. This
screening, of course, will cost the membrane in terms of
bending energy. The competition between screening of
the hexatic energy and the bending energy determines
the equilibrium shape of the membrane.

The energy of a single, isolated disclination with
“charge” s in a flat, circular membrane is given by
E = (s?/4n)In(R/ao) [1]. Here R is the radius of the
membrane, and ag is a microscopic cutoff. For five- and
sevenfold disclinations, E5 = E7 = (7K 4/36)In(R/ao).
Buckling of the membrane can reduce this energy. We
describe the location of the membrane by

X(’I‘, ¢) = (T sin @, r cos ¢, f(T, ¢)) . (9)

The diverging contribution to the energy comes from
the large r region of the surface. The bending energy
can diverge no more strongly than In(R/ao) in a buck-
led ground state, since otherwise the energy would in-
crease upon buckling. This bound implies that f grows
at most linearly with r. If f grows less rapidly than 7,
then the Green’s function defined by Eq. (7) is given by
8.G ~ 1/(2nr) as r — oo [20]. Furthermore, the Gauss-
Bonnet theorem then implies that f d?SK = 0 for mem-
branes with a disklike topology [21]. From Eq. (8), we see
that the hexatic energy remains E ~ (7K 4/36) In(R/ao),
and has not been reduced. For the logarithmic hexatic
energy to be screened by buckling, therefore, the height
must grow linearly with r:

X(r,¢) = (rsing,r cos §,rh(¢)) . (10)

The Green’s function that satisfies Eq. (7) is then given
by

G(r,¢) =b"'In [r(l + h(¢)2)1/2} , (11)
with
2 12\1/2
_ /d¢(1+}i++h}; ) - (12)

To evaluate the hexatic Hamiltonian, we need both the
Gaussian and mean curvature. For the surface defined
by Eq. (9), the Gaussian curvature is proportional to a ¢
function

K(o) = ad(o)g™/? . (13)
The coefficient a can be determined from
= / d*SK
= /chSy”Biﬂj
= / do'Q; , (14)

where ¢ is a contour bounding the surface. If e; and
ey are an orthonormal basis for vectors tangent to the

MICHAEL W. DEEM AND DAVID R. NELSON

surface, the gauge field is given by [19]

Qi =e€e] - ai62 . (15)
From this equation we find, by taking e; and e; to be
basis vectors in polar coordinates and subtracting the
result for a flat surface,

Q, =0,
0, =1- 0 ?:7:*12)1/2 (16)
We therefore conclude that
a=2r—>b. (17)

We can now perform the integrals on Eq. (8) to find

Ka(2m — s — b)?

H:
0 2b

In(R/ao) . (18)

The mean curvature is given by [21]
\2i
L+ [Vf2)/2
(h+ h'")(1 + h?)

r(1+ h2 + R/2)3/2 ° (19)
The bending energy is then given by
(h+h”) (1+h2)2
* In(R/ao )/d¢ e e (20)

The contribution to the bending energy associated with
the singularity at » = 0 will be absorbed into a core en-
ergy. The total energy of a hexatic membrane with a
single, isolated disclination, excluding the core contribu-
tion, is given by

H (2m — s — b)?
ln(R/aO) 4

/ do h+h” 2(1 + h2)2
(1+h2+h'2)5/2 :

(21)

The geometry of lowest energy is found by minimizing
Eq. (21) with respect to the function h(¢$). Note that b
depends on h(¢) through Eq. (12).

The route from the covariant Hamiltonian (1) to the
tractable expression (21) is complicated. For a nearly flat
surface, a simplified Hamiltonian is often used [5,8]:

H:%/dzr[aﬂ—A]z

where

5 [En e, @

Ai = 560k (DO (23)

and the derivatives are in flat space. The bond angle field
0o (o) that minimizes this energy is given by

8:i(8:00 — A;) =0 . (24)
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To satisfy this equation, we define
(0:00 — A;) = €;;0;x . (25)
Applying the operator €;;,0; to this equation, we find [9]
Vix = (021)(05f) — (9204 )% — s(r) , (26)

with

s(r) =Y sid(r—r;) . (27)

1

For an isolated five- or sevenfold disclination, s(r) =
+(7/3)é(r). The Hamiltonian now reduces to

K,y
H=="

& Vx|? + g/dzr(vzf)z . (28)
We can further find the height function f, which mini-

mizes this Hamiltonian. It satisfies a second, nonlinear
hexatic “von Kérman equation” [9]

KiAw F=(85x)(32f) + (92x) (82f)
~2(820,X) (820, f) - (29)

With the simple Hamiltonian (22), then, we have ex-
plicit partial differential equations that define the sur-
face of minimal energy. For the covariant Hamiltonian,
the differential equation arising from minimizing Eq. (21)
is much more complex.

III. THE ENERGY OF A FIVEFOLD
DISCLINATION

A fivefold disclination can be screened by a surface
with a positive Gaussian curvature. The natural surface
to consider is a cone.

We first review the results of the approximate Hamil-
tonian (22). A cone defined by f(r) = ar solves Egs. (26)
and (29), with x(r) = —(k/Ka)ln(r/ao) [9]. The coeffi-
cient is given by a2 = 1/3 — 2k/K 4. For k/K4 < 1/6,
the membrane buckles. The energy is given by

(mx/3)(1 — 3k/Ka)In(R/ao), /Ka <1/6
E5 ~
(mK4/36)In(R/ao), k/Ka > 1/6. (30)

We now review the results of the covariant Hamiltonian
(1) [10]. Equation (21) fully specifies the energy, with
h = a and b = 2m(1+a?)~1/2. We first note that Eq. (17)
can be derived from a geometrical argument. We consider
capping off the cone with a small sphere of radius ¢, as
in Fig. 2. The bending energy is unaffected by this small
perturbation, since we are ignoring the contribution near
r = 0. The Gaussian curvature is zero everywhere except
on the sphere. On the sphereitisgivenby a = [ d’SK =

27 fc1(>5¢du = 27(1 — cos®). With tanvy = a, we have
a = 271 — (1 + a?)~Y/?], in agreement with Eq. (17).
Upon defining z = (1 + a?)~/2, we have
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H _(1/6—1+=x)? k 1—z2
7Kaln(Rjag) v M R G

Minimization of this equation leads to

7K 4 {2 [(25/36 + k/K4)(1 — /K A)]"/? — 5/3}
By = xIn(R/ao), k/Ka < 11/72
(mK 4/36)In(R/ag), k/Ka > 11/72. (32)

We note that the limit K4 — oo corresponds to the
inextensional limit of a crystalline membrane. This en-
ergy has the correct limit E5 — (11wx/30)In(R/ao) as
K4 — oo, which corresponds to a crystalline membrane
[6]. While the Hamiltonian (22) is often thought of as
valid for small V f, we see that it does not exactly pre-
dict the buckling transition, where V f is indeed a small,
nonzero constant. :

When /K4 > 11/72, the above calculation shows
that the height grows sublinearly with . In fact, we now
show that the height grows with a power that depends
continuously on /K 4. We assume that f(r,¢) = f(r).
The hexatic and bending energies of Eq. (1) are then
given by

B oo (1+f/2)1/2 1 572
Fo = WKA/l dr r 1+ fr2)1/2 6l

oo 12\1/2
F. = m/ P U i
1 T

fl 7_f// 2
x [(1 T fr2)1/2 + (1 +f/2)3/2] : (33)

We have set the short-range cutoff to ap = 1. As we
shall see, f’ — 0 as » — oo, when k/K 4 > 11/72. Upon
expanding Eq. (33) for small f’, we find

Fwﬂ-/oodr [KA ls:(f'+1'f/')2_11KAf'2:|
1

367 + T T2r
+O(5%) . (34)

Upon solving the equation 6 F/§f(r) = 0, we find in the
case of constant moduli

f(r) ~ar'™¥ as r — oo, (35)

FIG. 2. Cone f(r) = ar, shown in projection, capped by a
small sphere used to calculate the integrated Gaussian curva-
ture. The angle 1 is given by tanvy = a.



FIG. 3. Height of an “unbuckled” mem-
brane with a fivefold disclination as a func-
tion of 7 for the case k/K4 = 1/4. There is a
short distance cutoff so that f(r) is undefined
for 7 < ao.
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with
E7 ~
y=[1-11K,/(725)]'/2% . (36)

We also minimize Eq. (33) numerically. We express
f'(r) on a grid at grid points r; = exp(Inrmaxt/n) and
approximate the integral by a sum and derivatives by
finite difference. We found convergence was achieved
for n = 200,7max = 100. Results are presented for
n = 400, 7max = 200. The Polak-Ribiere conjugate gra-
dient method was used to determine f'(r;) [22]. Figure
3 shows the height as a function of r for the specific
case K/K 4 = 1/4. The numerical results reproduce the
asymptotic scaling of Eq. (35). The energy of this ground
state is E5 = (nK4/36)InR — 0.02817K 4 + E., where
E. is a core energy contribution. If this core contribution
is sufficiently large in the deformed state, the surface of
minimal energy may be flat, and the constant a in Eq.
(35) can be zero.

IV. THE ENERGY OF A SEVENFOLD
DISCLINATION

A sevenfold disclination can be screened by a surface
with a negative Gaussian curvature. There is no obvi-
ous natural surface to consider in this case. Using the
approximate Hamiltonian (22), we can achieve an ana-
lytical answer, however. We let

f(r,¢) = arsin2¢,

?{—i In(r/ao) .

x(r) = (37)

Equation (29) is solved by this choice. Equation (26) is
solved provided that a? = 2/9 —4x/K 4. When k/K 4 <
1/18, the membrane buckles. The energy is given by

200.0

(mr)(1 —9x/Ka)ln(R/ao), /K4 <1/18

(mKa/36)In(R/ag), K/Ka > 1/18. (38)

The covariant Hamiltonian (1) does not yield so easily
to an analytical treatment. We can, however, expand Eq.
(21) for small h to find the buckling transition:

. 13K 4
T2
+r(h+2R" + R + O(R®) .

0H
Sh(@)

(h+R")
(39)

This equation predicts buckling for k/K 4 < 13/216 with
h(¢) asin2¢. Again the approximate Hamiltonian
(22) predicts the transition value only approximately.

We determine the surface that minimizes the energy
for general values of K/ K 4 by numerically identifying the
function h(¢) that minimizes Eq. (21). We express h(¢)
on a grid at grid points ¢; = 2wi/n, again approximating
the integral by a sum and derivatives by finite difference.
We found that convergence was achieved for n = 100.
Results are presented for n = 200. The Polak-Ribiere
conjugate gradient method was used to determine the
h(:) [22).

Figure 4 presents the numerically determined ener-
gies Hy, H,, and H. The membrane buckles when
/K4 < 0.060, in good agreement with the exact value of
13/216. As the membrane becomes less stiff, the buckling
is able to screen more and more of the hexatic energy:
the hexatic energy goes from

Hy ~ (mK4/36)In(R/ag) for k/Ka > 13/216
(40)
to
Ho~0 as r/Ka—0, (41)
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FIG. 4. Hexatic (short-dashed curve),
bending (long-dashed curve), and total (solid
curve) energies when r — co as a function of
/K a for a sevenfold disclination. An over-
all factor of In(R/ao) has been suppressed
in each term. The defect is unbuckled for
x/Ka > 13/216 ~ 0.060.

0.10 T T T
0.08 -
H/K 4
0.06 -
0.04
0.02
- \
0.00 == L L T
0.00 0.02 0.04 0.06
E/]{A
as expected. Similarly, the bending energy goes from
H.,~0 for «k/K4q>13/216 -(42)
to
H, ~227cIn(R/ag) as &k/K4q—0. (43)

The limit as k/Ka4 — 0 agrees with numerical calcula-
tions for inextensional crystalline membranes [6).

Figure 5 shows the function h(¢) for various values of
the ratio k/K 4. As expected, the surface is flatter for
stiffer surfaces. For very flexible membranes, the surface
converges to a limiting shape. This limiting shape is very
nearly proportional to sin2¢, as shown in Fig. 6. More

1.0 T T T

0.08

generally, we can expand f(r,¢) in a Fourier series

f(ri@) > fm(r) cos(me) , (44)
m=0

where f,,(0) = 0. All odd terms must vanish for a twofold
symmetric saddle point configuration. In addition, f
should change sign under a m/2 rotation, which elimi-
nates the terms in Eq. (44) with m = 0,4,8,.... Such a
symmetric saddle has an expansion of the form

f(r,9) Z fapt2(r) cos[2(2p + 1)4] ,

p=0

(45)

h(e)

FIG. 5. Surface h(¢) for a sevenfold defect
above its unbuckling transition for the cases
x/Ka = 0.06, 0.05, 0.03, 0.01, and 0.001.

3n/2

2n
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1.0 T T T

h(¢)

aol

] FIG. 6. Surface h(¢) in the limit
k/Ka — 0 (solid curve), which mimics the
/ behavior in a crystalline solid, and the func-

Y tion 0.534 sin(2¢) (dashed curve) for a seven-
y fold defect.

0 /2 3n/2

a conclusion also reached by Park and Lubensky [14]. We
have checked numerically that the only nonzero Fourier
components in Eq. (44) are indeed of the form m = 4p+2,
although the m = 2 term alone provides an excellent
approximation.

When /K4 > 13/216, the height grows sublinearly
with . Just as for the fivefold disclination, the height
grows with a power that depends continuously on k/K 4.
To see this, note first that when xk/K4 > 13/216, Vf —
0 as 7 — co. Upon expanding Eq. (1) for small V f, we
find

F ~ —1% drdg {2/r +13(0,f)?/r + 11(84f)?/r*
—12[0r(84)?]/7%}
+ 5 [drdo v (025 + @)/ + @30)/77)°
+O(f*) . (46)
The solution of §F /& f(r,¢) = 0 is
f(r) ~ar'™¥sin2¢ as r - oo, (47)
with
y = [720 + 13K 4/ — (331776 4+ 29952K 4 /K
+169K32% /)22 /12 . (48)

As in the case of fivefold disclinations, this sublinear de-
cay leads to an additive, constant correction to the loga-
rithmically diverging energy as R — oo.

V. THERMAL FLUCTUATIONS

We have so far ignored thermal fluctuations of the hex-
atic membrane. This assumption is valid only for the
T — 0 limit. For finite temperatures and for large mem-

2n

branes, thermal fluctuations will become important.

A complete discussion of thermal effects is beyond the
scope of this paper. We can, however, use the results
of David et al. [12] and of Park and Lubensky [13] to
estimate how the structure of disclinations in hexatic
membranes is modified at finite temperatures. Park and
Lubensky argue that proper implementation of an ultra-
violet cutoff to fluctuations in hexatic membranes leads
to the replacement

3
Ky > KF=K,— 557—TchT(KA/n)z . (49)

The bending rigidity « is unchanged. In the absence of a
nonzero disclination density, the remaining renormaliza-

tion equations for x and K5 are those found originally
by David et al. [12]:

dKSf
=0
dl '
dx/kgT 3 Ko
-l 50
dl 47 ( 4K (50)

The renormalization group flows induced by these equa-
tions are indicated schematically by the arrows in Fig.
1.
We apply these results to the dilute limit of isolated
disclinations discussed in Secs. IV and V. The locus of
disclination unbinding transitions, given by the criteria
F5(k,Ka) = 0 and Fr(k,K4) = 0 discussed in the In-
troduction, is shown as the solid and dashed lines in Fig.
1. When thermal fluctuations are superimposed on the
solutions of the T' = 0 extremal equations for disclina-
tions in a membrane of size R, standard finite size scal-
ing arguments suggest that the couplings controlling the
defect energies on this scale should be the running cou-
pling constants K¥(l) and (l) obtained from Eq. (50)
evaluated at | = In(R/ao). Effects of thermally excited
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bound disclination pairs on an otherwise isolated defect
could be included by adding a vortex fugacity to the set
of recursion relations [13]. We then expect that Egs.
(33) and (46) should be replaced by expressions where
K 4 and k are replaced by the functions Kflﬂ(l =1Inr/ao)
and k(I = Inr/ag) appearing inside the integrals over r.
Although K does not renormalize at this order, a non-
trivial renormalization could appear when higher-order
corrections in kgT/k and kpT /K5 are included.

If the basin of attraction of the locally stable fixed
line in Fig. 1 includes the entire hexatic phase, Kf(r)
and k(r) will always be driven as r — oo into the un-
buckled regime for both five- and sevenfold disclinations,
since lim, o k(r)/K$¥(r) = 1/4. The bending energy
will then not contribute to the logarithmically diverg-
ing part of the energy, and both defects should unbind
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at the same point. Although “unbuckled” in this sense,
the limited disclination shapes will be characterized by
the power laws (35) and (47), with /K4 = 1/4. For
fivefold defects we find the asymptotic shape is given by
y = y4+ = 0.6236, while for sevenfold defects we have
y =y = 0.8249.
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